Search results
Results From The WOW.Com Content Network
The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series ...
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...
By choosing an appropriate g (typically a small integer), only some 5–10 terms of the series are needed to compute the gamma function with typical single or double floating-point precision. If a fixed g is chosen, the coefficients can be calculated in advance and, thanks to partial fraction decomposition, the sum is recast into the following ...
Lorentz factor γ as a function of fraction of given velocity and speed of light. Its initial value is 1 (when v = 0 ); and as velocity approaches the speed of light ( v → c ) γ increases without bound ( γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc
In the case and are real and positive, the series converges for all values of the argument , so the Mittag-Leffler function is an entire function. This class of functions are important in the theory of the fractional calculus. See below for three-parameter generalizations.
Great Value has a great price point—you can find it at Walmart for a fraction of the cost of brand names. Read the original article on Southern Living. Related articles. AOL.
In probability theory and statistics, the gamma distribution is a versatile two-parameter family of continuous probability distributions. [1] The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. [2] There are two equivalent parameterizations in common use: