Search results
Results From The WOW.Com Content Network
For example, in the reaction CH 4 + 2 O 2 → CO 2 + 2 H 2 O, the stoichiometric number of CH 4 is −1, the stoichiometric number of O 2 is −2, for CO 2 it would be +1 and for H 2 O it is +2. In more technically precise terms, the stoichiometric number in a chemical reaction system of the i -th component is defined as
An air–fuel ratio meter may be used to measure the percent oxygen in the combustion gas, from which the percent excess oxygen can be calculated from stoichiometry and a mass balance for fuel combustion. For example, for propane (C 3 H 8) combustion between stoichiometric and 30 percent excess air (AFR mass between 15.58 and 20.3), the ...
A ratio of 1 corresponds to the stoichiometric ratio Constant volume flame temperature of a number of fuels, with air. If we make the assumption that combustion goes to completion (i.e. forming only CO 2 and H 2 O), we can calculate the adiabatic flame temperature by hand either at stoichiometric conditions or lean of stoichiometry (excess air ...
Partial oxidation (POX) is a type of chemical reaction.It occurs when a substoichiometric fuel-air mixture is partially combusted in a reformer, creating a hydrogen-rich syngas which can then be put to further use, for example in a fuel cell.
The combustion of a stoichiometric mixture of fuel and oxidizer (e.g. two moles of hydrogen and one mole of oxygen) in a steel container at 25 °C (77 °F) is initiated by an ignition device and the reactions allowed to complete. When hydrogen and oxygen react during combustion, water vapor is produced.
Mixture fraction is a quantity used in combustion studies that measures the mass fraction of one stream of a mixture formed by two feed streams, one the fuel stream and the other the oxidizer stream. [ 1 ] [ 2 ] Both the feed streams are allowed to have inert gases. [ 3 ]
The stoichiometric concentration of methane in oxygen is therefore 1/(1+2), which is 33 percent. Any stoichiometric mixture of methane and oxygen will lie on the straight line between pure nitrogen (and zero percent methane) and 33 percent methane (and 67 percent oxygen) – this is shown as the red stoichiometric line.
Partial oxidation (POX) occurs when a sub-stoichiometric fuel-air mixture is partially combusted in a reformer creating hydrogen-rich syngas. POX is typically much faster than steam reforming and requires a smaller reactor vessel. POX produces less hydrogen per unit of the input fuel than steam reforming of the same fuel. [21]