Search results
Results From The WOW.Com Content Network
A dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet. Each claim is accompanied by five manually annotated evidence sentences retrieved from the English Wikipedia that support, refute or do not give enough information to validate the claim totalling in 7,675 claim ...
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.
Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [ 15 ] [ 16 ] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
This example calculates the five-number summary for the following set of observations: 0, 0, 1, 2, 63, 61, 27, 13. These are the number of moons of each planet in the Solar System . It helps to put the observations in ascending order: 0, 0, 1, 2, 13, 27, 61, 63.
scikit-learn – extends SciPy with a host of machine learning models (classification, clustering, regression, etc.) Shogun (toolbox) – open-source, large-scale machine learning toolbox that provides several SVM (Support Vector Machine) implementations (like libSVM, SVMlight) under a common framework and interfaces to Octave, MATLAB, Python, R
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.