When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unit circle - Wikipedia

    en.wikipedia.org/wiki/Unit_circle

    Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.

  3. Group of rational points on the unit circle - Wikipedia

    en.wikipedia.org/wiki/Group_of_rational_points...

    The Pythagorean triple (4,3,5) is associated to the rational point (4/5,3/5) on the unit circle. In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x 2 + y 2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    All of the trigonometric functions of the angle θ (theta) can be constructed geometrically in terms of a unit circle centered at O. Sine function on unit circle (top) and its graph (bottom) In this illustration, the six trigonometric functions of an arbitrary angle θ are represented as Cartesian coordinates of points related to the unit circle.

  5. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    To calculate this integral, one uses the function = (⁡ +) and the branch of the logarithm corresponding to −π < arg z ≤ π. We will calculate the integral of f(z) along the keyhole contour shown at right. As it turns out this integral is a multiple of the initial integral that we wish to calculate and by the Cauchy residue theorem we have

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37] In this setting, the terminal side of an angle A placed in standard position will intersect the unit circle in a point (x,y), where = ⁡ and = ⁡. [37]

  7. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}

  8. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials ) are preferred, if they exist.

  9. Circular mean - Wikipedia

    en.wikipedia.org/wiki/Circular_mean

    Then compute the arithmetic mean of these points. The resulting point will lie within the unit disk but generally not on the unit circle. Convert that point back to polar coordinates. The angle is a reasonable mean of the input angles. The resulting radius will be 1 if all angles are equal.