When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .

  4. Plus and minus signs - Wikipedia

    en.wikipedia.org/wiki/Plus_and_minus_signs

    Subtraction is the inverse of addition. [1] The function whose value for any real or complex argument is the additive inverse of that argument. For example, if x = 3, then −x = −3, but if x = −3, then −x = +3. Similarly, −(−x) = x. A prefix of a numeric constant. When it is placed immediately before an unsigned number, the ...

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Inverse elements of vector addition: For every v ∈ V, there exists an element −v ∈ V, called the additive inverse of v, such that v + (−v) = 0. Compatibility of scalar multiplication with field multiplication: a(bv) = (ab)v [nb 3] Identity element of scalar multiplication: 1v = v, where 1 denotes the multiplicative identity in F.

  6. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  7. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms. [4] The proof makes use of the "1", and does not work in a rng.

  8. Convicted felons, such as Trump, can get permits to enter ...

    www.aol.com/convicted-felons-trump-permits-enter...

    The claim: Donald Trump can't travel to Canada because he is a convicted felon. A Dec. 3 Threads post (direct link, archive link) offers a theory as to why Canadian Prime Minister Justin Trudeau ...

  9. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.