When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms. [4] The proof makes use of the "1", and does not work in a rng.

  4. Adjoint functors - Wikipedia

    en.wikipedia.org/wiki/Adjoint_functors

    Then F and G can be restricted to D 1 and C 1 and yield inverse equivalences of these subcategories. In a sense, then, adjoints are "generalized" inverses. Note however that a right inverse of F (i.e. a functor G such that FG is naturally isomorphic to 1 D) need not be a right (or left) adjoint of F. Adjoints generalize two-sided inverses.

  5. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    This includes the existence of an additive inverse −a for all elements a and of a multiplicative inverse b −1 for every nonzero element b. This allows the definition of the so-called inverse operations, subtraction a − b and division a / b, as a − b = a + (−b) and a / b = a ⋅ b −1. Often the product a ⋅ b is represented by ...

  6. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  7. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    For the integers and the operation addition +, denoted (, +), the operation + combines any two integers to form a third integer, addition is associative, zero is the additive identity, every integer has an additive inverse, , and the addition operation is commutative since + = + for any two integers and .

  8. Operation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operation_(mathematics)

    The most commonly studied operations are binary operations (i.e., operations of arity 2), such as addition and multiplication, and unary operations (i.e., operations of arity 1), such as additive inverse and multiplicative inverse. An operation of arity zero, or nullary operation, is a constant.

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.