Search results
Results From The WOW.Com Content Network
Thus in a totally ordered set, we can simply use the terms minimum and maximum. If a chain is finite, then it will always have a maximum and a minimum. If a chain is infinite, then it need not have a maximum or a minimum. For example, the set of natural numbers has no maximum, though it has a minimum.
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.
Maximum Induced path [3]: GT23 Minimum maximal independent set a.k.a. minimum independent dominating set [4] NP-complete special cases include the minimum maximal matching problem, [3]: GT10 which is essentially equal to the edge dominating set problem (see above). Metric dimension of a graph [3]: GT61 Metric k-center; Minimum degree spanning tree
For example, in the graph P 3, a path with three vertices a, b, and c, and two edges ab and bc, the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}. In this same graph, the maximal cliques are the sets {a, b} and {b, c}.
In a totally ordered set the maximal element and the greatest element coincide; and it is also called maximum; in the case of function values it is also called the absolute maximum, to avoid confusion with a local maximum. [1] The dual terms are minimum and absolute minimum. Together they are called the absolute extrema. Similar conclusions ...
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
If it does, it is a minimum or least element of . Similarly, if the supremum of belongs to , it is a maximum or greatest element of . For example, consider the set of negative real numbers (excluding zero).
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]