When.com Web Search

  1. Ads

    related to: ncert class 11 logarithm basic practice book

Search results

  1. Results From The WOW.Com Content Network
  2. National Council of Educational Research and Training

    en.wikipedia.org/wiki/National_Council_of...

    Those who wish to adopt the textbooks are required to send a request to NCERT, upon which soft copies of the books are received. The material is press-ready and may be printed by paying a 5% royalty, and by acknowledging NCERT. [11] The textbooks are in color-print and are among the least expensive books in Indian book stores. [11]

  3. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  6. Central Board of Secondary Education - Wikipedia

    en.wikipedia.org/wiki/Central_Board_of_Secondary...

    For promotion from Secondary level (Class IX-X) to Senior Secondary level (Class XI-XII), a student must obtain, for all subjects (or best 5 if 6 subjects are taken), 33% overall, without any minimum theory mark requirement. Originally, the passing criteria were set such that a student had to get 33% in both the theory and practical components.

  7. History of logarithms - Wikipedia

    en.wikipedia.org/wiki/History_of_logarithms

    At first the reaction to Saint-Vincent's hyperbolic logarithm was a continuation of studies of quadrature as in Christiaan Huygens (1651) [10] and James Gregory (1667). [11] Subsequently, an industry of making logarithms arose as "logaritmotechnia", the title of works by Nicholas Mercator (1668), [12] Euclid Speidell (1688), [13] and John Craig ...

  8. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  9. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In number theory , the more commonly used term is index : we can write x = ind r a (mod m ) (read "the index of a to the base r modulo m ") for r x ≡ a (mod m ) if r is a primitive root of m and gcd ...