Search results
Results From The WOW.Com Content Network
and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.
According to this remainder, the program execution will then jump to a case statement followed by exactly the number of iterations needed. Once this is done, everything is straightforward: the code continues by doing iterations of groups of eight instructions; this has become possible since the remaining number of iterations is a multiple of ...
An indefeasibly vested remainder is certain to become possessory in the future, and cannot be divested. [4]For example A conveys to "B for life, then to C and C 's heirs." C has an indefeasibly vested remainder, certain to become possessory upon termination of B 's life estate (when B dies).
One continues repeating step 2 until there are no digits remaining in the dividend. In this example, we see that 30 divided by 4 is 7 with a remainder of 2. The number written above the bar (237) is the quotient, and the last small digit (2) is the remainder.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
By definition, a and b can be written as multiples of c : a = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r 0, since r 0 = a − q 0 b = mc − q 0 nc = (m − q 0 n)c. An analogous argument shows that c also divides the subsequent remainders r 1, r 2, etc.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.