When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, ... We can convert these ratios to a fraction, ...

  3. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The positive and negative normalized numbers closest to zero (represented with the binary value 1 in the exponent field and 0 in the fraction field) are ±1 × 2 −126 ≈ ±1.17549 × 10 −38 The finite positive and finite negative numbers furthest from zero (represented by the value with 254 in the exponent field and all 1s in the fraction ...

  4. Negative base - Wikipedia

    en.wikipedia.org/wiki/Negative_base

    A negative base (or negative radix) may be used to construct a non-standard positional numeral system. Like other place-value systems, each position holds multiples of the appropriate power of the system's base; but that base is negative—that is to say, the base b is equal to −r for some natural number r ( r ≥ 2 ).

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Conversion of the fractional part: Consider 0.375, the fractional part of 12.375. To convert it into a binary fraction, multiply the fraction by 2, take the integer part and repeat with the new fraction by 2 until a fraction of zero is found or until the precision limit is reached which is 23 fraction digits for IEEE 754 binary32 format.

  6. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]

  8. Non-integer base of numeration - Wikipedia

    en.wikipedia.org/wiki/Non-integer_base_of_numeration

    Let β > 1 be the base and x a non-negative real number. Denote by ⌊x⌋ the floor function of x (that is, the greatest integer less than or equal to x) and let {x} = x − ⌊x⌋ be the fractional part of x. There exists an integer k such that β k ≤ x < β k+1. Set = ⌊ / ⌋ and

  9. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.