When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...

  3. Particle horizon - Wikipedia

    en.wikipedia.org/wiki/Particle_horizon

    The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.

  4. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    This is just an artifact of how Schwarzschild coordinates are defined; a free-falling particle will only take a finite proper time (time as measured by its own clock) to pass between an outside observer and an event horizon, and if the particle's world line is drawn in the Kruskal–Szekeres diagram this will also only take a finite coordinate ...

  5. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    Comoving spacetime diagram of our flat universe. Particle horizon: green, Hubble radius: blue, Event horizon: purple, Light cone: orange. Hyperbolic universe with the same radiation and matter density parameters as ours, but without dark energy. Closed universe without dark energy and with overcritical density, which leads to a Big Crunch ...

  6. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...

  7. Horizon (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Horizon_(general_relativity)

    Event horizon, a boundary in spacetime beyond which events cannot affect the observer, thus referring to a black hole's boundary and the boundary of an expanding universe; Apparent horizon, a surface defined in general relativity; Cauchy horizon, a surface found in the study of Cauchy problems; Cosmological horizon, a limit of observability

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    Under these conditions, an apparent horizon is present in the particle's (accelerating) reference frame, representing a boundary beyond which events are unobservable. For example, this occurs with a uniformly accelerated particle. A spacetime diagram of this situation is shown in the figure to the right. As the particle accelerates, it ...