Search results
Results From The WOW.Com Content Network
Although the criterion for deformation twin growth is not entirely understood, it is a tip-controlled phenomenon linked to the interaction between the residual and mobile twin partials at the twin interface; thermodynamically, this involves the elastic energy of the strained lattice, the interface and volume free-energy of the twin, and the ...
A twin boundary is a defect that introduces a plane of mirror symmetry in the ordering of a crystal. For example, in cubic close-packed crystals, the stacking sequence of a twin boundary would be ABCABCBACBA. On planes of single crystals, steps between atomically flat terraces can also be regarded as planar defects.
Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal conductivity of the material. Most grain boundaries are preferred sites for the onset of corrosion [1] and for the precipitation of new phases from the solid. They are also important to many of the mechanisms of creep. [2]
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
On either side of this domain, the lattice is still perfect, and the boundaries of the domain are referred to as antiphase boundaries. [1] Crucially, crystals on either side of an antiphase boundary are related by a translation, rather than a reflection (a crystal twin ) or an inversion (an inversion domain ).
In a TEM, bright field imaging is one technique used to identify the location of stacking faults. Typical image of stacking fault is dark with bright fringes near a low-angle grain boundary, sandwiched by dislocations at the end of the stacking fault. Fringes indicate that the stacking fault is at an incline with respect to the viewing plane. [3]
Coble creep, or grain-boundary diffusion, is the diffusion of vacancies occurs along grain-boundaries to elongate the grains along the stress axis. Coble creep has a stronger grain-size dependence than Nabarro–Herring creep, and occurs at lower temperatures while remaining temperature dependent.
The terminology of a topological defect vs. a topological soliton, or even just a plain "soliton", varies according to the field of academic study. Thus, the hypothesized but unobserved magnetic monopole is a physical example of the abstract mathematical setting of a monopole ; much like the Skyrmion, it owes its stability to belonging to a non ...