Search results
Results From The WOW.Com Content Network
K deficit (in mmol) = (K normal lower limit − K measured) × body weight (kg) × 0.4 Meanwhile, the daily body requirement of potassium is calculated by multiplying 1 mmol to body weight in kilograms. Adding potassium deficit and daily potassium requirement would give the total amount of potassium need to be corrected in mmol.
If one removes 1440 mg in 24 h, this is equivalent to removing 1 mg/min. If the blood concentration is 0.01 mg/mL (1 mg/dL), then one can say that 100 mL/min of blood is being "cleared" of creatinine, since, to get 1 mg of creatinine, 100 mL of blood containing 0.01 mg/mL would need to have been cleared.
Where HV is the hydroxyl value; V B is the amount (ml) potassium hydroxide solution required for the titration of the blank; V acet is the amount (ml) of potassium hydroxide solution required for the titration of the acetylated sample; W acet is the weight of the sample (in grams) used for acetylation; N is the normality of the titrant; 56.1 is ...
The trans-tubular potassium gradient (TTKG) is an index reflecting the conservation of potassium in the cortical collecting ducts (CCD) of the kidneys. It is useful in diagnosing the causes of hyperkalemia or hypokalemia. [1] [2] The TTKG estimates the ratio of potassium in the lumen of the CCD to that in the peritubular capillaries.
In chemistry, acid value (AV, acid number, neutralization number or acidity) is a number used to quantify the acidity of a given chemical substance.It is the quantity of base (usually potassium hydroxide (KOH)), expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.
mg/dL ~60% [1] 2.2, [3] 2.8 [1] 3.9, [3] 4.4 [1] mmol/L Protein: 15 [1] [2] 40, [4] 45 [1] [2] mg/dL ~1% [1] Albumin: 7.8 [5] 40 [5] mg/dL: 0 [6] - 0.7% [6] - corresponding to an albumin (CSF/serum) quotient of 0 to 7x10 −3: Lactate: 1.1 [1] 2.4 [1] mmol/L Creatinine: 50 [1] 110 [1] μmol/L Phosphorus: 0.4 [1] 0.6 [1] μmol/L Urea: 3.0 [1] 6. ...
The osmol gap is typically calculated with the following formula (all values in mmol/L): = = ([+] + [] + []) In non-SI laboratory units: Calculated osmolality = 2 x [Na mmol/L] + [glucose mg/dL] / 18 + [BUN mg/dL] / 2.8 + [ethanol/3.7] [3] (note: the values 18 and 2.8 convert mg/dL into mmol/L; the molecular weight of ethanol is 46, but empiric data shows that it does not act as an ideal ...
Calculated osmolarity = 2 Na + Glucose + Urea (all in mmol/L) As Na+ is the major extracellular cation, the sum of osmolarity of all other anions can be assumed to be equal to natremia, hence [Na+]x2 ≈ [Na+] + [anions] To calculate plasma osmolality use the following equation (typical in the US): = 2[Na +