Search results
Results From The WOW.Com Content Network
Air pollution can cause diseases, allergies, and even death; it can also cause harm to animals and crops and damage the natural environment (for example, climate change, ozone depletion or habitat degradation) or built environment (for example, acid rain). [3] Air pollution can occur naturally or be caused by human activities. [4]
Atmospheric chemistry is a branch of atmospheric science that studies the chemistry of the Earth's atmosphere and that of other planets. This multidisciplinary approach of research draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology, climatology and other disciplines to understand both natural and human-induced changes in atmospheric ...
During this time, the atmospheric carbon dioxide concentration has varied between 180 and 210 ppm during ice ages, increasing to 280–300 ppm during warmer interglacials. [115] [116] CO 2 mole fractions in the atmosphere have gone up by around 35 percent since the 1900s, rising from 280 parts per million by volume to 387 parts per million in 2009.
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide. Some commonly industrially produced Koch acids include pivalic acid , 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [ 1 ]
This reaction is manifested by the "greasy" feel that KOH gives when touched; fats on the skin are rapidly converted to soap and glycerol. Molten KOH is used to displace halides and other leaving groups. The reaction is especially useful for aromatic reagents to give the corresponding phenols. [16]
Aqueous alkaline solutions do not reject carbon dioxide (CO 2) so the fuel cell can become "poisoned" through the conversion of KOH to potassium carbonate (K 2 CO 3). [2] Because of this, alkaline fuel cells typically operate on pure oxygen, or at least purified air and would incorporate a 'scrubber' into the design to clean out as much of the ...
Potassium superoxide is a source of superoxide, which is an oxidant and a nucleophile, depending on its reaction partner. [8] Upon contact with water, it undergoes disproportionation to potassium hydroxide, oxygen, and hydrogen peroxide: 4 KO 2 + 2 H 2 O → 4 KOH + 3 O 2 2 KO 2 + 2 H 2 O → 2 KOH + H 2 O 2 + O 2 [9] It reacts with carbon ...
It is formed as potassium reacts with oxygen in the air, along with potassium oxide (K 2 O) and potassium superoxide (KO 2). Crystal structure. Potassium peroxide reacts with water to form potassium hydroxide and oxygen: 2 K 2 O 2 + 2 H 2 O → 4 KOH + O 2 ↑