Ad
related to: 3d pythagorean theorem questions
Search results
Results From The WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...
The Pythagoras tree is a plane fractal constructed from squares. Invented by the Dutch mathematics teacher Albert E. Bosman in 1942, [ 1 ] it is named after the ancient Greek mathematician Pythagoras because each triple of touching squares encloses a right triangle , in a configuration traditionally used to depict the Pythagorean theorem .
Emil, The classical Pythagoras's theorem is in 3D. The third dimension is the rotation axis associated with the angle between the two sides. The Lagrange identity only leads to Pythagoras's theorem when in 3D. Try getting Pythagoras's theorem from a Lagrange identity in 2D and see how you get on. David Tombe 18:24, 18 May 2010 (UTC)
The theorem for which the greatest number of different proofs have been discovered is possibly the Pythagorean theorem, with hundreds of proofs being published up to date. [3] Another theorem that has been proved in many different ways is the theorem of quadratic reciprocity .
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt, with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [3]
The Pythagorean theorem and de Gua's theorem are special cases (n = 2, 3) of a general theorem about n-simplices with a right-angle corner, proved by P. S. Donchian and H. S. M. Coxeter in 1935. [2] This, in turn, is a special case of a yet more general theorem by Donald R. Conant and William A. Beyer (1974), [3] which can be stated as follows.
For the choice of the 4D coordinates to be valid descriptors of the original 3D space it must have the same number of degrees of freedom. Since four coordinates have four degrees of freedom it must have a constraint placed on it. We can choose a constraint such that Pythagorean theorem holds in the new 4D space. That is