When.com Web Search

  1. Ads

    related to: fluid velocity calculator edge work on air line flow data

Search results

  1. Results From The WOW.Com Content Network
  2. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    A lift-producing airfoil either has camber or operates at a positive angle of attack, the angle between the chord line and the fluid flow far upstream of the airfoil. Moreover, the airfoil must have a sharp trailing edge. [6] Any real fluid is viscous, which implies that the fluid velocity vanishes on the airfoil.

  3. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [2] The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle ...

  4. Aerodynamic potential-flow code - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_potential-flow...

    In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.

  5. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  7. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    Next, the flow follows the Fanno line until a shock changes the flow from supersonic to subsonic. The flow then follows the Fanno line again, almost reaching a choked condition before exiting the duct. Figure 5 Fanno and Rayleigh Line Intersection Chart. The Fanno flow model is often used in the design and analysis of nozzles.

  8. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    In fluid dynamics, the lift coefficient (C L) is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft.

  9. Hydrodynamical helicity - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamical_helicity

    In meteorology, [2] helicity corresponds to the transfer of vorticity from the environment to an air parcel in convective motion. Here the definition of helicity is simplified to only use the horizontal component of wind and vorticity, and to only integrate in the vertical direction, replacing the volume integral with a one-dimensional definite integral or line integral: