Search results
Results From The WOW.Com Content Network
Acquired immunity depends upon the interaction between antigens and a group of proteins called antibodies produced by B cells of the blood. There are many antibodies and each is specific for a particular type of antigen. Thus immune response in acquired immunity is due to the precise binding of antigens to antibody.
B cell activation: from immature B cell to plasma cell or memory B cell Basic B cell function: bind to an antigen, receive help from a cognate helper T cell, and differentiate into a plasma cell that secretes large numbers of antibodies. B cell activation occurs in the secondary lymphoid organs (SLOs), such as the spleen and lymph nodes. [1]
The immune system may respond in multiple ways to an antigen; a key feature of this response is the production of antibodies by B cells (or B lymphocytes) involving an arm of the immune system known as humoral immunity. The antibodies are soluble and do not require direct cell-to-cell contact between the pathogen and the B-cell to function.
The most common simplified overview description of the B cell differentiation pathway involves the following steps: an antigen interacts with the corresponding surface membrane immunoglobulin after which the B cell begins expressing receptors for growth factors secreted by T cells (BCGFs and IL-2), after these factors bind, the lymphocytes ...
Then the cell stops producing all other side chains and starts intensive synthesis and secretion of the antigen-binding side chain as a soluble antibody. Though distinct from clonal selection, Ehrlich's idea was a selection theory far more accurate than the instructive theories that dominated immunology in the next decades.
When memory B cells reencounter their specific antigen, they proliferate and differentiate into plasma cells, which then respond to and clear the antigen. [3] The memory B cells that do not differentiate into plasma cells at this point can reenter the germinal centers to undergo further class switching or somatic hypermutation for further ...
After the inflammatory immune response to danger-associated antigen, some of the antigen-specific T cells and B cells persist in the body and become long-living memory T and B cells. After the second encounter with the same antigen, they recognize the antigen and mount a faster and more robust response.
Priming is the first contact that antigen-specific T helper cell precursors have with an antigen. It is essential to the T helper cells' subsequent interaction with B cells to produce antibodies. [1] Priming of antigen-specific naive lymphocytes occurs when antigen is presented to them in immunogenic form (capable of inducing an immune response).