Search results
Results From The WOW.Com Content Network
Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
In mathematics and computer science, graph theory is the study of graphs, ... Archived (PDF) from the original on 2019-05-17. Gibbons, Alan (1985).
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
Butler earned his master's degree at Brigham Young University in 2003. His master's thesis was titled Bounding the Number of Graphs Containing Very Long Induced Paths. [1] He completed a doctorate at the University of California, San Diego in 2008, authoring the dissertation Eigenvalues and Structures of Graphs, advised by Fan Chung.
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, ... "Spectral Graph Theory" (PDF).
This notion has made it possible to use the methods of graph theory in universal algebra and several other areas of discrete mathematics and computer science.Graph algebras have been used, for example, in constructions concerning dualities, [2] equational theories, [3] flatness, [4] groupoid rings, [5] topologies, [6] varieties, [7] finite-state machines, [8] [9] tree languages and tree ...
Graph Theory, 1736–1936 is a book in the history of mathematics on graph theory.It focuses on the foundational documents of the field, beginning with the 1736 paper of Leonhard Euler on the Seven Bridges of Königsberg and ending with the first textbook on the subject, published in 1936 by Dénes KÅ‘nig.