When.com Web Search

  1. Ad

    related to: machine learning for pattern recognition pdf notes book 2

Search results

  1. Results From The WOW.Com Content Network
  2. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification , which attempts to assign each input value to one of a given set of classes (for example, determine whether a given ...

  3. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    In machine learning the random subspace method, [1] also called attribute bagging [2] or feature bagging, is an ensemble learning method that attempts to reduce the correlation between estimators in an ensemble by training them on random samples of features instead of the entire feature set.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A representative book on research into machine learning during the 1960s was Nilsson's book on Learning Machines, dealing mostly with machine learning for pattern classification. [15] Interest related to pattern recognition continued into the 1970s, as described by Duda and Hart in 1973. [16]

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [2]

  6. Thomas G. Dietterich - Wikipedia

    en.wikipedia.org/wiki/Thomas_G._Dietterich

    Machine learning can uncover patterns in data to model the migration of species. But there are many other applications for the same techniques which will allow organizations to better manage our forests, oceans, and endangered species, as well as improve traffic flow, water systems, the electrical power grid, and more.

  7. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  8. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system .

  9. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.