Search results
Results From The WOW.Com Content Network
Photochemical action plots are a scientific tool used to understand the effects of different wavelengths of light on photochemical reactions.The methodology involves exposing a reaction solution to the same number of photons at varying monochromatic wavelengths, monitoring the conversion or reaction yield of starting materials and/or reaction products.
An action spectrum is a graph of the rate of biological effectiveness plotted against wavelength of light. [1] It is related to absorption spectrum in many systems. Mathematically, it describes the inverse quantity of light required to evoke a constant response.
Phototropism in Solanum lycopersicum. In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism ...
Bottom: PAR action spectrum (oxygen evolution per incident photon) of an isolated chloroplast. Chlorophyll , the most abundant plant pigment, is most efficient in capturing red and blue light. Accessory pigments such as carotenes and xanthophylls harvest some green light and pass it on to the photosynthetic process, but enough of the green ...
Photobiology is the scientific study of the beneficial and harmful interactions of light (technically, non-ionizing radiation) in living organisms. [1] The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.
The natural ("wild-type") ChR2 absorbs blue light with an absorption and action spectrum maximum at 480 nm. [14] When the all-trans-retinal complex absorbs a photon, it induces a conformational change from all-trans to 13-cis-retinal. This change introduces a further one in the transmembrane protein, opening the pore to at least 6 Å.
Image of a monocot and dicot sprouting away from the earth, toward the sun. In botany, the Cholodny–Went model, proposed in 1927, is an early model describing tropism in emerging shoots of monocotyledons, including the tendencies for the shoot to grow towards the light (phototropism) and the roots to grow downward (gravitropism).
It was renamed phototropism in 1892, because it is a response to light rather than to the sun, and because the phototropism of algae in lab studies at that time strongly depended on the brightness (positive phototropic for weak light, and negative phototropic for bright light, like sunlight).