Search results
Results From The WOW.Com Content Network
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize.
Feedforward inputs that form synapses proximal to the soma and directly lead to action potentials; NMDA spikes generated in the more distal basal; Apical dendrites that depolarize the soma (usually insufficient to generate a somatic action potential) - Learns by growing new synapses - Inspired by the pyramidal cells in neocortex layers 2/3 and 5
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV , where the conductance G is the inverse of resistance G =1/ R .
In order to arrive at the complete solution for a propagated action potential, one must write the current term I on the left-hand side of the first differential equation in terms of V, so that the equation becomes an equation for voltage alone.
Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. [1]
Saltatory conduction. In neuroscience, nerve conduction velocity (CV) is the speed at which an electrochemical impulse propagates down a neural pathway.Conduction velocities are affected by a wide array of factors, which include age, sex, and various medical conditions.
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
Figure B. is a recording of an actual action potential N.B. Actual recordings of action potentials are often distorted compared to the schematic view because of variations in electrophysiological techniques used to make the recording. In neurophysiology, a dendritic spike refers to an action potential generated in the dendrite of a neuron ...