Search results
Results From The WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C)—the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of ...
Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water.Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO).
Brackish water reverse osmosis (BWRO) is the desalination of water with less salt than seawater, usually from river estuaries or saline wells. The process is substantially the same as SWRO, but requires lower pressures and less energy. [1] Up to 80% of the feed water input can be recovered as fresh water, depending on feed salinity.
A change in concentration over a distance is called a concentration gradient, a change in pressure over a distance is called a pressure gradient, and a change in temperature over a distance is called a temperature gradient. The word diffusion derives from the Latin word, diffundere, which means "to spread out".
Osmolarity is affected by changes in water content, as well as temperature and pressure. In contrast, osmolality is independent of temperature and pressure. For a given solution, osmolarity is slightly less than osmolality, because the total solvent weight (the divisor used for osmolality) excludes the weight of any solutes, whereas the total ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
It can be described as the measure of the potential energy stored (chemiosmotic potential) as a combination of proton and voltage (electrical potential) gradients across a membrane. The electrical gradient is a consequence of the charge separation across the membrane (when the protons H + move without a counterion , such as chloride Cl − ).