Search results
Results From The WOW.Com Content Network
The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: [1] A stiffer material will have a higher elastic modulus. An elastic modulus has the form: =
Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise. It is the modulus of elasticity for tension or axial ...
Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve, which shows the relation between stress (the average restorative internal force per unit area) and strain (the relative deformation). [2]
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.
The stress relaxation modulus () is the ratio of the stress remaining at time after a step strain was applied at time =: = (), which is the time-dependent generalization of Hooke's law . For visco-elastic solids, G ( t ) {\displaystyle G\left(t\right)} converges to the equilibrium shear modulus [ 4 ] G {\displaystyle G} :
Bulk modulus, a measure of compression resistance; Elastic modulus, a measure of stiffness; Shear modulus, a measure of elastic stiffness; Young's modulus, a specific elastic modulus; Modulo operation (a % b, mod(a, b), etc.), in both math and programming languages; results in remainder of a division; Casting modulus used in Chvorinov's rule.
Flexural modulus measurement For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the ...
The constant is called the modulus of elasticity (or just modulus) while its reciprocal is called the modulus of compliance (or just compliance). There are three postulates that define the ideal elastic behaviour: (1) the strain response to each level of applied stress (or vice versa) has a unique equilibrium value;