Ad
related to: planar graph formula excel
Search results
Results From The WOW.Com Content Network
A planar graph is said to be convex if all of its faces (including the outer face) are convex polygons. Not all planar graphs have a convex embedding (e.g. the complete bipartite graph K 2,4). A sufficient condition that a graph can be drawn convexly is that it is a subdivision of a 3-vertex-connected planar graph.
In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane who published it in 1937. It states that a finite undirected graph is planar if and only if the cycle space of the graph (taken modulo 2) has a cycle basis in which each edge of the graph ...
By Euler's formula for planar graphs, G has 3n − 6 edges; equivalently, if one defines the deficiency of a vertex v in G to be 6 − deg(v), the sum of the deficiencies is 12. Since G has at least four vertices and all faces of G are triangles, it follows that every vertex in G has degree at least three.
The two graphs and , are nonplanar, as may be shown either by a case analysis or an argument involving Euler's formula. Additionally, subdividing a graph cannot turn a nonplanar graph into a planar graph: if a subdivision of a graph has a planar drawing, the paths of the subdivision form curves that may be used to represent the edges of itself ...
The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...
The proof is an easy consequence of Euler's formula. [1] [2] As a corollary of this theorem, if an embedded planar graph has only one face whose number of sides is not 2 mod 3, and the remaining faces all have numbers of sides that are 2 mod 3, then the graph is not Hamiltonian.
Formally, a Laman graph is a graph on n vertices such that, for all k, every k-vertex subgraph has at most 2k − 3 edges, and such that the whole graph has exactly 2n − 3 edges. Laman graphs are named after Gerard Laman , of the University of Amsterdam , who in 1970 used them to characterize rigid planar structures. [ 1 ]
In mathematics, Scheinerman's conjecture, now a theorem, states that every planar graph is the intersection graph of a set of line segments in the plane. This conjecture was formulated by E. R. Scheinerman in his Ph.D. thesis , following earlier results that every planar graph could be represented as the intersection graph of a set of simple curves in the plane (Ehrlich, Even & Tarjan 1976).