Search results
Results From The WOW.Com Content Network
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
As for instance, if the body passes the periastron at coordinates = (), =, at time =, then to find out the position of the body at any time, you first calculate the mean anomaly from the time and the mean motion by the formula = (), then solve the Kepler equation above to get , then get the coordinates from:
The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 13 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .
The classical method of finding the position of an object in an elliptical orbit from a set of orbital elements is to calculate the mean anomaly by this equation, and then to solve Kepler's equation for the eccentric anomaly. Define ϖ as the longitude of the pericenter, the angular distance of the pericenter from a reference direction.
Consider the ellipse with equation given by: + =, where a is the semi-major axis and b is the semi-minor axis. For a point on the ellipse, P = P(x, y), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle E in the
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
(Given the lunar orbit's eccentricity e = 0.0549, its semi-minor axis is 383,800 km. Thus the Moon's orbit is almost circular.) The barycentric lunar orbit, on the other hand, has a semi-major axis of 379,730 km, the Earth's counter-orbit taking up the difference, 4,670 km. The Moon's average barycentric orbital speed is 1.010 km/s, whilst the ...
is the eccentricity of the central body (e.g., 0.081819 for Earth) ϕ n {\displaystyle \phi _{n}} is the geodetic latitude (the angle between the normal line of horizontal plane and the equatorial plane)