Search results
Results From The WOW.Com Content Network
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series.
where (g jk) is the inverse of the matrix (g jk), defined as (using the Kronecker delta, and Einstein notation for summation) g ji g ik = δ j k. Although the Christoffel symbols are written in the same notation as tensors with index notation, they do not transform like tensors under a change of coordinates.
The formula is valid for all index values, and for any n (when n = 0 or n = 1, this is the empty product). ... The Levi-Civita symbol is related to the Kronecker delta.
δ ij is the Kronecker delta. μ and λ are proportionality constants associated with the assumption that stress depends on strain linearly; μ is called the first coefficient of viscosity or shear viscosity (usually just called "viscosity") and λ is the second coefficient of viscosity or volume viscosity (and it is related to bulk viscosity).
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
where γ m are the Stieltjes constants and δ m,0 represents the Kronecker delta function. Notice that this last identity immediately implies relations between the polylogarithm functions, the Stirling number exponential generating functions given above, and the Stirling-number-based power series for the generalized Nielsen polylogarithm functions.
where is the Kronecker delta. These two relationships may be understood to be matrix inverse relationships. ... , related by a finite sum Stirling number formula ...