Search results
Results From The WOW.Com Content Network
Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space
For example, the perimeter of a rectangle of width 0.001 and length 1000 is slightly above 2000, while the perimeter of a rectangle of width 0.5 and length 2 is 5. Both areas are equal to 1. Proclus (5th century) reported that Greek peasants "fairly" parted fields relying on their perimeters. [ 2 ]
A rectangle is a rectilinear polygon: its sides meet at right angles. A rectangle in the plane can be defined by five independent degrees of freedom consisting, for example, of three for position (comprising two of translation and one of rotation), one for shape (aspect ratio), and one for overall size (area).
For example, if shape has an area of 5 square yards and a perimeter of 5 yards, then it has an area of 45 square feet (4.2 m 2) and a perimeter of 15 feet (since 3 feet = 1 yard and hence 9 square feet = 1 square yard). Moreover, contrary to what the name implies, changing the size while leaving the shape intact changes an "equable shape" into ...
For example, the first and fourth of Euclid's postulates, that there is a unique line between any two points and that all right angles are equal, hold in elliptic geometry. Postulate 3, that one can construct a circle with any given center and radius, fails if "any radius" is taken to mean "any real number", but holds if it is taken to mean ...
The first direction is also true for rectangles, i.e.: If a rectangle s is maximal, then each pair of adjacent edges of s intersects the boundary of P. The second direction is not necessarily true: a rectangle can intersect the boundary of P in even 3 adjacent sides and still not be maximal as it can be stretched in the 4th side.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
In two dimensions, 2x 1 + 2x 2 is the perimeter of a rectangle with sides of length x 1 and x 2. Similarly, 4 √ x 1 x 2 is the perimeter of a square with the same area, x 1 x 2, as that rectangle. Thus for n = 2 the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square.