When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU).

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. [7] [8] [9] As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and ...

  4. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2] Google began using TPUs internally in 2015, and in 2018 made them available for third-party use, both as part of its cloud infrastructure and by ...

  5. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    In January 2019, the TensorFlow team released a developer preview of the mobile GPU inference engine with OpenGL ES 3.1 Compute Shaders on Android devices and Metal Compute Shaders on iOS devices. [30] In May 2019, Google announced that their TensorFlow Lite Micro (also known as TensorFlow Lite for Microcontrollers) and ARM's uTensor would be ...

  6. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.

  7. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. [6] In addition to drivers and runtime kernels, the CUDA platform includes compilers, libraries and developer tools to help programmers accelerate their applications.

  8. MLIR (software) - Wikipedia

    en.wikipedia.org/wiki/MLIR_(software)

    MLIR (Multi-Level Intermediate Representation) is a unifying software framework for compiler development. [1] MLIR can make optimal use of a variety of computing platforms such as central processing units (CPUs), graphics processing units (GPUs), data processing units (DPUs), Tensor Processing Units (TPUs), field-programmable gate arrays (FPGAs), artificial intelligence (AI) application ...

  9. Google Tensor - Wikipedia

    en.wikipedia.org/wiki/Google_Tensor

    "Tensor" is a reference to Google's TensorFlow and Tensor Processing Unit technologies, and the chip is developed by the Google Silicon team housed within the company's hardware division, led by vice president and general manager Phil Carmack alongside senior director Monika Gupta, [15] in conjunction with the Google Research division.