Search results
Results From The WOW.Com Content Network
The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...
The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]
Most volume-manager implementations share the same basic design. They start with physical volumes (PVs), which can be either hard disks, hard disk partitions, or Logical Unit Numbers (LUNs) of an external storage device. Volume management treats each PV as being composed of a sequence of chunks called physical extents (PEs).
It is a Riemann-solver-free, second-order, high-resolution scheme that uses MUSCL reconstruction. It is a fully discrete method that is straight forward to implement and can be used on scalar and vector problems, and can be viewed as a Rusanov flux (also called the local Lax-Friedrichs flux) supplemented with high order reconstructions.
Allocation is an ongoing process based on flow or volume measurements, and gives the distribution of contributing sources, often with a final calculation per day, which in turn provides the basis for a daily production report in the case of a field that produces hydrocarbons.
Measurement of volume by displacement, (a) before and (b) after an object has been submerged. The amount by which the liquid rises in the cylinder (∆V) is equal to the volume of the object. In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the ...
The method is based on the idea of a so-called fraction function . It is a scalar function, defined as the integral of a fluid's characteristic function in the control volume, namely the volume of a computational grid cell. The volume fraction of each fluid is tracked through every cell in the computational grid, while all fluids share a single ...
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.