Ad
related to: gravitational biology examples of organisms
Search results
Results From The WOW.Com Content Network
Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.
Gravitaxis (or geotaxis [1]) is a form of taxis characterized by the directional movement of an organism in response to gravity. [2] There are a few different causes for gravitaxis. Many microorganisms have receptors like statocysts that allow them to sense the direction of gravity and to adjust their orientation accordingly. However ...
In other words, they can still live and breed despite gravitational forces that are 400,000 times greater than what's felt here on Earth. Paracoccus denitrificans was one of the bacteria which displayed not only survival but also robust cellular growth under these conditions of hyperacceleration which are usually found only in cosmic ...
Other examples of gravitropic mutants include those affecting the transport or response to the hormone auxin. [10] In addition to the information about gravitropism which such auxin-transport or auxin-response mutants provide, they have been instrumental in identifying the mechanisms governing the transport and cellular action of auxin as well ...
Drawing of the statocyst system Statocysts (ss) and statolith (sl) inside the head of sea snail Gigantopelta chessoia. The statocyst is a balance sensory receptor present in some aquatic invertebrates, including bivalves, [1] cnidarians, [2] ctenophorans, [3] echinoderms, [4] cephalopods, [5] [6] crustaceans, [7] and gastropods, [8] A similar structure is also found in Xenoturbella. [9]
A wheeled buffalo figurine—probably a children's toy—from Magna Graecia in archaic Greece [1]. Several organisms are capable of rolling locomotion. However, true wheels and propellers—despite their utility in human vehicles—do not play a significant role in the movement of living things (with the exception of the corkscrew-like flagella of many prokaryotes).
In 2011, tardigrades went on the International Space Station STS-134, [18] showing that they could survive microgravity and cosmic radiation, [19] [20] and should be suitable model organisms. [21] [22] In 2019, a capsule containing tardigrades in a cryptobiotic state was on board the Israeli lunar lander Beresheet which crashed on the Moon. [23]
The Rare Earth hypothesis argues that planets with complex life, like Earth, are exceptionally rare.. In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity, such as sexually reproducing, multicellular organisms on Earth, and subsequently human intelligence, required an improbable combination of astrophysical ...