Ad
related to: gravitational biology examples in real life
Search results
Results From The WOW.Com Content Network
Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity.
Other examples of gravitropic mutants include those affecting the transport or response to the hormone auxin. [10] In addition to the information about gravitropism which such auxin-transport or auxin-response mutants provide, they have been instrumental in identifying the mechanisms governing the transport and cellular action of auxin as well ...
An example is given by microorganisms with a center of mass that is shifted to one end of the organism. Similar to a buoy, such mass-anisotropic microorganisms orient upwards under gravity. It has been shown that even an asymmetry in the shape of microorganisms can be sufficient to cause gravitaxis.
Root tip: 1. meristem 2. columella (statocytes with statoliths at the bottom of the cell) 3. side of the root cap 4. dead cells 5. cell elongation zone. Optical microscope 100x Statocyte: 1.cell wall 2.endoplasmic reticulum 3.plasmodesma 4.cell nucleus 5.mitochondrion 6.cytoplasm 7.statolith 8.root 9.columella 10.statocyte
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
The blue lines are gravitational waves, ripples in time and space, which is how astronomers detected the merger, and orange and red areas indicate parts of the neutron star being stripped away.
Isostasy (Greek ísos 'equal', stásis 'standstill') or isostatic equilibrium is the state of gravitational equilibrium between Earth's crust (or lithosphere) and mantle such that the crust "floats" at an elevation that depends on its thickness and density. This concept is invoked to explain how different topographic heights can exist at Earth ...
Synthetic biology, or breaking down life into its basic component parts to create enhanced biological systems, can be likened to writing software that enables life. Or genetic engineering on steroids.