Ad
related to: how to calculate ballistics coefficient of variation
Search results
Results From The WOW.Com Content Network
In ballistics, the ballistic coefficient (BC, C b) of a body is a measure of its ability to overcome air resistance in flight. [1] It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass.
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
Example of a ballistic table for a given 7.62×51mm NATO load. Bullet drop and wind drift are shown both in mrad and MOA.. A ballistic table or ballistic chart, also known as the data of previous engagements (DOPE) chart, is a reference data chart used in long-range shooting to predict the trajectory of a projectile and compensate for physical effects of gravity and wind drift, in order to ...
Sectional density has the same (implied) units as the ballistic coefficient. Within terminal ballistics, the sectional density of a projectile is one of the determining factors for projectile penetration. The interaction between projectile (fragments) and target media is however a complex subject. A study regarding hunting bullets shows that ...
Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially weapon munitions such as bullets, unguided bombs, rockets and the like; the science or art of designing and accelerating projectiles so as to achieve a desired performance.
External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.
The QuickLOAD interior ballistics predictor program also contains the external ballistics predictor computer program QuickTARGET. QuickTARGET is based on the Siacci/Mayevski G1 model and gives the user the possibility to enter several different BC G1 constants for different speed regimes to calculate ballistic predictions that more closely ...
The aerodynamic forces are generated with respect to body axes, which is not an inertial frame. In order to calculate the motion, the forces must be referred to inertial axes. This requires the body components of velocity to be resolved through the heading angle () into inertial axes. Resolving into fixed (inertial) axes: