When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nucleic acid - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid

    Attached to each sugar is one of four types of molecules called nucleobases (informally, bases). It is the sequence of these four nucleobases along the backbone that encodes genetic information. This information specifies the sequence of the amino acids within proteins according to the genetic code. The code is read by copying stretches of DNA ...

  3. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon, corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.

  4. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    The purine nitrogenous bases are characterized by their single amino group (−NH 2), at the C6 carbon in adenine and C2 in guanine. [5] Similarly, the simple-ring structure of cytosine, uracil, and thymine is derived of pyrimidine, so those three bases are called the pyrimidine bases. [6] Each of the base pairs in a typical double-helix DNA ...

  5. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    RNA is transcribed with only four bases (adenine, cytosine, guanine and uracil), [19] but these bases and attached sugars can be modified in numerous ways as the RNAs mature. Pseudouridine (Ψ), in which the linkage between uracil and ribose is changed from a C–N bond to a C–C bond, and ribothymidine (T) are found in various places (the ...

  6. DNA and RNA codon tables - Wikipedia

    en.wikipedia.org/wiki/DNA_and_RNA_codon_tables

    A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    A tetraloop is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA: UNCG, GNRA, and CUUG (N is one of the four nucleotides and R is a purine). UNCG is the most stable tetraloop. [9] Pseudoknot is an RNA secondary structure first identified in turnip yellow mosaic virus. [10]

  8. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    This RNA copy is then decoded by a ribosome that reads the RNA sequence by base-pairing the messenger RNA to transfer RNA, which carries amino acids. Since there are 4 bases in 3-letter combinations, there are 64 possible codons (4 3 combinations). These encode the twenty standard amino acids, giving most amino acids more than one possible ...

  9. Genetic code - Wikipedia

    en.wikipedia.org/wiki/Genetic_code

    He postulated that sets of three bases (triplets) must be employed to encode the 20 standard amino acids used by living cells to build proteins, which would allow a maximum of 4 3 = 64 amino acids. [4] He named this DNA–protein interaction (the original genetic code) as the "diamond code". [5]