Search results
Results From The WOW.Com Content Network
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only. The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load).
The constant is given by =, where e is the eccentricity of the conic section. The equation for a conic section with apex at the origin and tangent to the y axis is y 2 − 2 R x + ( K + 1 ) x 2 = 0 {\displaystyle y^{2}-2Rx+(K+1)x^{2}=0}
The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 13 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .
In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...
Elastic buckling of a "heavy" column i.e., column buckling under its own weight, was first investigated by Greenhill in 1881. [1] He found that a free-standing, vertical column, with density ρ {\displaystyle \rho } , Young's modulus E {\displaystyle E} , and cross-sectional area A {\displaystyle A} , will buckle under its own weight if its ...
Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):
The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in symbols, = (,). It can be thought of as how far a node is from the node most distant from it in the graph. The radius r of a graph is the minimum eccentricity of any vertex or, in symbols,