Search results
Results From The WOW.Com Content Network
Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial ...
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
To describe a soft ferromagnetic material for technical use, the following parameters are specified: (Relative) permeability Ratio of induction B in the material caused by some field H to an induction in a vacuum in the same field; it is a dimensionless value, as it is relative to a vacuum permeability;
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.
Strip of permalloy. Permalloy is a nickel–iron magnetic alloy, with about 80% nickel and 20% iron content.Invented in 1914 by physicist Gustav Elmen at Bell Telephone Laboratories, [1] it is notable for its very high magnetic permeability, which makes it useful as a magnetic core material in electrical and electronic equipment, and also in magnetic shielding to block magnetic fields.
Currently, this effect is called the microwave permeability or network ferromagnetic resonance in the literature. These results are sensitive to the domain wall configuration of the material and eddy currents. In terms of ferromagnetic resonance, the effect of an AC-field applied along the direction of the magnetization is called parallel pumping.
Mu-metal typically has relative permeability values of 80,000–100,000 compared to several thousand for ordinary steel. It is a "soft" ferromagnetic material; it has low magnetic anisotropy and magnetostriction, [1] giving it a low coercivity so that it saturates at low magnetic fields.