When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem .

  3. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    To compute the chromatic number and the chromatic polynomial, this procedure is used for every =, …,, impractical for all but the smallest input graphs. Using dynamic programming and a bound on the number of maximal independent sets , k -colorability can be decided in time and space O ( 2.4423 n ) {\displaystyle O(2.4423^{n})} . [ 13 ]

  4. Graph polynomial - Wikipedia

    en.wikipedia.org/wiki/Graph_polynomial

    Important graph polynomials include: The characteristic polynomial, based on the graph's adjacency matrix. The chromatic polynomial, a polynomial whose values at integer arguments give the number of colorings of the graph with that many colors. The dichromatic polynomial, a 2-variable generalization of the chromatic polynomial

  5. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    Finally, the third branch of algebraic graph theory concerns algebraic properties of invariants of graphs, and especially the chromatic polynomial, the Tutte polynomial and knot invariants. The chromatic polynomial of a graph, for example, counts the number of its proper vertex colorings .

  6. Chromatic symmetric function - Wikipedia

    en.wikipedia.org/wiki/Chromatic_symmetric_function

    The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings , and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph.

  7. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    The choosability (or list colorability or list chromatic number) ch(G) of a graph G is the least number k such that G is k-choosable. More generally, for a function f assigning a positive integer f ( v ) to each vertex v , a graph G is f -choosable (or f -list-colorable ) if it has a list coloring no matter how one assigns a list of f ( v ...

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    χ(G) (using the Greek letter chi) is the chromatic number of G and χ ′(G) is its chromatic index; see chromatic and coloring. child In a rooted tree, a child of a vertex v is a neighbor of v along an outgoing edge, one that is directed away from the root. chord chordal 1.

  9. Graph property - Wikipedia

    en.wikipedia.org/wiki/Graph_property

    Chromatic number, the smallest number of colors for the vertices in a proper coloring; Chromatic index, the smallest number of colors for the edges in a proper edge coloring; Choosability (or list chromatic number), the least number k such that G is k-choosable; Independence number, the largest size of an independent set of vertices