Search results
Results From The WOW.Com Content Network
The most common impurity in diamond is nitrogen, which can comprise up to 1% of a diamond by mass. [13] Previously, all lattice defects in diamond were thought to be the result of structural anomalies; later research revealed nitrogen to be present in most diamonds and in many different configurations.
Under extremely high pressures (1.1 million atm) and high temperatures (2000 K), as produced in a diamond anvil cell, nitrogen polymerises into the single-bonded cubic gauche crystal structure. This structure is similar to that of diamond, and both have extremely strong covalent bonds, resulting in its nickname "nitrogen diamond". [47]
Simplified atomic structure of the NV center. The nitrogen-vacancy center (N-V center or NV center) is one of numerous photoluminescent point defects in diamond.Its most explored and useful properties include its spin-dependent photoluminescence (which enables measurement of the electronic spin state using optically detected magnetic resonance), and its relatively long (millisecond) spin ...
The nitrogen impurities, up to 0.3% (3000 ppm), are clustered within the carbon lattice, and are relatively widespread. The absorption spectrum of the nitrogen clusters can cause the diamond to absorb blue light, making it appear pale yellow or almost colorless.
Diamond is extremely strong owing to its crystal structure, known as diamond cubic, in which each carbon atom has four neighbors covalently bonded to it. Bulk cubic boron nitride (c-BN) is nearly as hard as diamond. Diamond reacts with some materials, such as steel, and c-BN wears less when cutting or abrading such material. [4]
Main diamond producing countries. Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic.Diamond as a form of carbon is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of electricity, and insoluble in water.
The nitrogen vacancy defect in diamond consists of a single substitutional nitrogen atom (replacing one carbon atom) and an adjacent gap, or vacancy, in the lattice where normally a carbon atom would be located. A nitrogen vacancy centre in the diamond lattice, viewed along the [100] axis. Carbon atoms (grey) make up the bulk diamond crystal.
The most common impurity, nitrogen, replaces a small proportion of carbon atoms in a diamond's structure and causes a yellowish to brownish tint. [36] This effect is present in almost all white diamonds; in only the rarest diamonds is the coloration from this effect undetectable.