Search results
Results From The WOW.Com Content Network
Plant morphology treats both the vegetative structures of plants, as well as the reproductive structures. The vegetative (somatic) structures of vascular plants include two major organ systems: (1) a shoot system, composed of stems and leaves, and (2) a root system. These two systems are common to nearly all vascular plants, and provide a ...
Homogamy refers to the maturation of male and female reproductive organs (of plants) at the same time, which is also known as simultaneous or synchronous hermaphrodism and is the antonym of dichogamy. Many flowers appear to be homogamous but some of these may not be strictly functionally homogamous, because for various reasons male and female ...
Primary and secondary roots in a cotton plant. In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. [1]
Plants may bear either all bisexual flowers (hermaphroditic), both male and female flowers (monoecious), or only one sex (dioecious), in which case separate plants are either male or female flower-bearing. Where both bisexual and unisexual flowers exist on the same plant, it is called polygamous.
Growth of cells contributes to the plant's size, unevenly localized growth produces bending, turning and directionalization of organs- for example, stems turning toward light sources (phototropism), roots growing in response to gravity (gravitropism), and other tropisms originated because cells on one side grow faster than the cells on the ...
When cells on one side of a stem grow longer and faster than cells on the other side, the stem will bend to the side of the slower growing cells as a result. This directional growth can occur via a plant's response to a particular stimulus, such as light (phototropism), gravity (gravitropism), water, (hydrotropism), and physical contact ...
Versuch die Metamorphose der Pflanzen zu erklären, known in English as Metamorphosis of Plants, was published by German poet and philosopher Johann Wolfgang von Goethe in 1790. In this work, Goethe essentially discovered the (serially) homologous nature of leaf organs in plants, from cotyledons, to photosynthetic leaves, to the petals of a flower.
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]