Search results
Results From The WOW.Com Content Network
A contour line (also isoline, isopleth, isoquant or isarithm) of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. [ 1 ] [ 2 ] It is a plane section of the three-dimensional graph of the function f ( x , y ) {\displaystyle f(x,y)} parallel to the ( x , y ...
The contour integral of a complex function: is a generalization of the integral for real-valued functions. For continuous functions in the complex plane , the contour integral can be defined in analogy to the line integral by first defining the integral along a directed smooth curve in terms of an integral over a real valued parameter.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
When the number of independent variables is two, a level set is called a level curve, also known as contour line or isoline; so a level curve is the set of all real-valued solutions of an equation in two variables x 1 and x 2.
Typical applications include the contour lines on topographic maps or the generation of isobars for weather maps. Marching squares takes a similar approach to the 3D marching cubes algorithm: Process each cell in the grid independently. Calculate a cell index using comparisons of the contour level(s) with the data values at the cell corners.
As a second example, consider calculating the residues at the singularities of the function = which may be used to calculate certain contour integrals. This function appears to have a singularity at z = 0, but if one factorizes the denominator and thus writes the function as = it is apparent that the singularity at z = 0 is a removable ...
Many examples of such functions were familiar in nineteenth-century mathematics; abelian functions, theta functions, and some hypergeometric series, and also, as an example of an inverse problem; the Jacobi inversion problem. [7] Naturally also same function of one variable that depends on some complex parameter is a candidate.
The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.