Ad
related to: midline theorem worksheet grade 9 cbse maths textbook
Search results
Results From The WOW.Com Content Network
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
Cameron–ErdÅ‘s theorem (discrete mathematics) Cameron–Martin theorem (measure theory) Cantor–Bernstein–Schröder theorem (set theory, cardinal numbers) Cantor's intersection theorem (real analysis) Cantor's isomorphism theorem (order theory) Cantor's theorem (set theory, Cantor's diagonal argument)
Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...
This fact is known as the Feuerbach conic theorem. The nine point circle and the 16 tangent circles of the orthocentric system. If an orthocentric system of four points A, B, C, H is given, then the four triangles formed by any combination of three distinct points of that system all share the same nine-point circle.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
It is uncertain who actually discovered the theorem; however, the oldest extant exposition appears in Spherics by Menelaus. In this book, the plane version of the theorem is used as a lemma to prove a spherical version of the theorem. [8] In Almagest, Ptolemy applies the theorem on a number of problems in spherical astronomy. [9]
An illustration of Carathéodory's theorem for a square in R 2. Carathéodory's theorem in 2 dimensions states that we can construct a triangle consisting of points from P that encloses any point in the convex hull of P. For example, let P = {(0,0), (0,1), (1,0), (1,1)}. The convex hull of this set is a square. Let x = (1/4, 1/4) in the convex ...