When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weak interaction - Wikipedia

    en.wikipedia.org/wiki/Weak_interaction

    The weak interaction has a very short effective range (around 10 −17 to 10 −16 m (0.01 to 0.1 fm)). [b] [14] [13] At distances around 10 −18 meters (0.001 fm), the weak interaction has an intensity of a similar magnitude to the electromagnetic force, but this starts to decrease exponentially with increasing distance.

  3. Strangeness - Wikipedia

    en.wikipedia.org/wiki/Strangeness

    In most cases these decays change the value of the strangeness by one unit. This doesn't necessarily hold in second-order weak reactions, however, where there are mixes of K 0 and K 0 mesons. All in all, the amount of strangeness can change in a weak interaction reaction by +1, 0 or −1 (depending on the reaction).

  4. Kaon - Wikipedia

    en.wikipedia.org/wiki/Kaon

    Two different neutral K mesons, carrying different strangeness, can turn from one into another through the weak interactions, since these interactions do not conserve strangeness. The strange quark in the anti-K 0 turns into a down quark by successively absorbing two W-bosons of opposite charge. The down antiquark in the anti-

  5. List of mesons - Wikipedia

    en.wikipedia.org/wiki/List_of_mesons

    Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.

  6. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    The weak interaction is responsible for various forms of particle decay, such as beta decay. It is weak and short-range, due to the fact that the weak mediating particles, W and Z bosons, have mass. W bosons have electric charge and mediate interactions that change the particle type (referred to as flavor) and charge.

  7. Strange quark - Wikipedia

    en.wikipedia.org/wiki/Strange_quark

    When they decayed through the weak interactions, they had lifetimes of around 10 −10 seconds. While studying these decays, Murray Gell-Mann (in 1953) [4] [5] and Kazuhiko Nishijima (in 1955) [6] developed the concept of strangeness (which Nishijima called eta-charge, after the eta meson (η)) to explain the "strangeness" of the longer-lived ...

  8. D meson - Wikipedia

    en.wikipedia.org/wiki/D_meson

    Such transitions involve a change of the internal charm quantum number, and can take place only via the weak interaction. In D mesons, the charm quark preferentially changes into a strange quark via an exchange of a W particle, therefore the D meson preferentially decays into kaons (K) and pions (π). [1]

  9. WISArD experiment - Wikipedia

    en.wikipedia.org/wiki/WISArD_experiment

    This yielded the first experimental determination of the weak magnetism form factor, which contains the major part of the effect of the strong interaction on the weak interaction-driven beta decay, for such a heavy nucleus. [2] The result is in agreement with that of a twin-experiment using instead a multi-wire drift chamber based beta ...