Search results
Results From The WOW.Com Content Network
The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead. [ 3 ] 222 Rn occurs in significant quantities as a step in the normal radioactive decay chain of 238 U, also known as the uranium series , which slowly decays into a variety of radioactive nuclides and eventually decays ...
Hence, a parent isotope is one that undergoes decay to form a daughter isotope. For example element 92, uranium, has an isotope with 144 neutrons (236 U) and it decays into an isotope of element 90, thorium, with 142 neutrons (232 Th). The daughter isotope may be stable or it may itself decay to form another daughter isotope.
Radon-222 (222 Rn, Rn-222, historically radium emanation or radon) is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226 .
Lung cancer is the only observed consequence of high concentration radon exposures; both human and animal studies indicate that the lung and respiratory system are the primary targets of radon daughter-induced toxicity. [1] Radon has a short half-life (3.8 days) and decays into other solid particulate radium-series radioactive
There are 39 known isotopes of radon (86 Rn), from 193 Rn to 231 Rn; all are radioactive.The most stable isotope is 222 Rn with a half-life of 3.8235 days, which decays into 218 Po
Residues from the oil and gas industry often contain radium and its daughters. The sulfate scale from an oil well can be very radium rich. The water inside an oil field is often very rich in strontium, barium and radium, while seawater is very rich in sulfate: so if water from an oil well is discharged into the sea or mixed with seawater, the radium is likely to be brought out of solution by ...
The Live Chart of Nuclides – IAEA Color-map of fission product yields, and detailed data by click on a nuclide. Periodic Table with isotope decay chain displays. Click on element, and then isotope mass number to see the decay chain (link to uranium 235 ).
Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222.