Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation: any index may appear at most twice and furthermore a raised index must contract with a lowered index ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example:
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}
The following are some examples: The term λx. λy. x, sometimes called the K combinator, is written as λ λ 2 with de Bruijn indices. The binder for the occurrence x is the second λ in scope. The term λx. λy. λz. x z (y z) (the S combinator), with de Bruijn indices, is λ λ λ 3 1 (2 1). The term λz. (λy. y (λx. x)) (λx.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
For example, the solution to the Dirichlet problem for the unit disk in R 2 is given by the Poisson integral formula. If f {\displaystyle f} is a continuous function on the boundary ∂ D {\displaystyle \partial D} of the open unit disk D {\displaystyle D} , then the solution to the Dirichlet problem is u ( z ) {\displaystyle u(z)} given by