Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation: any index may appear at most twice and furthermore a raised index must contract with a lowered index ...
Download as PDF; Printable version; ... Example 2: = + ... but the answers to the easier problems 1 and 2 are needed for proving the answers to problems 3 ...
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
[5] [6] The base usually equals 100 and the index number is usually expressed as 100 times the ratio to the base value. For example, if a commodity costs twice as much in 1970 as it did in 1960, its index number would be 200 relative to 1960. Index numbers are used especially to compare business activity, the cost of living, and employment ...
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example: