Ad
related to: measuring classifier performance in ml class a diesel engine for sale in texas
Search results
Results From The WOW.Com Content Network
In more practical, less contrived instances, however, there is usually a trade-off, such that they are inversely proportional to one another to some extent. This is because we rarely measure the actual thing we would like to classify; rather, we generally measure an indicator of the thing we would like to classify, referred to as a surrogate ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...
In machine learning (ML), a margin classifier is a type of classification model which is able to give an associated distance from the decision boundary for each data sample. For instance, if a linear classifier is used, the distance (typically Euclidean , though others may be used) of a sample from the separating hyperplane is the margin of ...
Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: y ^ = f ( x ) {\displaystyle {\hat {y}}=f(x)} The samples come from some set X (e.g., the set of all documents , or the set of all images ), while the class labels form a finite set Y defined prior to training.
In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.
Linear classification in this non-linear space is then equivalent to non-linear classification in the original space. The most commonly used example of this is the kernel Fisher discriminant . LDA can be generalized to multiple discriminant analysis , where c becomes a categorical variable with N possible states, instead of only two.
In machine learning, the kernel perceptron is a variant of the popular perceptron learning algorithm that can learn kernel machines, i.e. non-linear classifiers that employ a kernel function to compute the similarity of unseen samples to training samples. The algorithm was invented in 1964, [1] making it the first kernel classification learner. [2]