Ads
related to: formula method of quadratic equation solver
Search results
Results From The WOW.Com Content Network
Completing the square is the oldest method of solving general quadratic equations, used in Old Babylonian clay tablets dating from 1800–1600 BCE, and is still taught in elementary algebra courses today.
Completing the square can be used to derive a general formula for solving quadratic equations, called the quadratic formula. [9] The mathematical proof will now be briefly summarized. [ 10 ] It can easily be seen, by polynomial expansion , that the following equation is equivalent to the quadratic equation: ( x + b 2 a ) 2 = b 2 − 4 a c 4 a 2 ...
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
Polynomial equations of degree up to four can be solved exactly using algebraic methods, of which the quadratic formula is the simplest example. Polynomial equations with a degree of five or higher require in general numerical methods (see below) or special functions such as Bring radicals , although some specific cases may be solvable ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
The Japanese mathematician Seki Kōwa used a form of Newton's method in the 1670s to solve single-variable equations, though the connection with calculus was missing. [6] Newton's method was first published in 1685 in A Treatise of Algebra both Historical and Practical by John Wallis. [7]
He presented a method of completing the square to solve quadratic equations, sometimes called Śrīdhara's method or the Hindu method. Because the quadratic formula can be derived by completing the square for a generic quadratic equation with symbolic coefficients, it is called Śrīdharācārya's formula in some places.
Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability.