Search results
Results From The WOW.Com Content Network
Pauling calculated the charge build up on the silicon atom due to the difference in electronegativity to be +2. The electroneutrality principle led Pauling to the conclusion that charge transfer from O to Si must occur using d orbitals forming a π-bond and he calculated that this π-bonding accounted for the shortening of the Si-O bond.
One of Pauling's examples is olivine, M 2 SiO 4, where M is a mixture of Mg 2+ at some sites and Fe 2+ at others. The structure contains distinct SiO 4 tetrahedra which do not share any oxygens (at corners, edges or faces) with each other. The lower-valence Mg 2+ and Fe 2+ cations are surrounded by polyhedra which do share oxygens.
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
The bond valence method is a development of Pauling's rules. In 1930, Lawrence Bragg [11] showed that Pauling's electrostatic valence rule could be represented by electrostatic lines of force emanating from cations in proportion to the cation charge and ending on anions. The lines of force are divided equally between the bonds to the corners of ...
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
Crystal structure prediction (CSP) is the calculation of the crystal structures of solids from first principles.Reliable methods of predicting the crystal structure of a compound, based only on its composition, has been a goal of the physical sciences since the 1950s. [1]
The polar substituent constants are similar in principle to σ values from the Hammett equation, as an increasing value corresponds to a greater electron-withdrawing ability. Bent's rule suggests that as the electronegativity of the groups increase, more p character is diverted towards those groups, which leaves more s character in the bond ...
The basic rule given above makes several approximations. One simplification is rounding to the nearest integer. Because we are describing the number of electrons in a band using an average value, the s and d shells can be filled to non-integer numbers of electrons, allowing the Slater–Pauling rule to give more accurate predictions.