Search results
Results From The WOW.Com Content Network
Classical query optimization associates each query plan with one scalar cost value. Parametric query optimization [9] assumes that query plan cost depends on parameters whose values are unknown at optimization time. Such parameters can for instance represent the selectivity of query predicates that are not fully specified at optimization time ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This image or media file may be available on the Wikimedia Commons as File:Python 3.3.2 reference document.pdf, where categories and captions may be viewed. While the license of this file may be compliant with the Wikimedia Commons, an editor has requested that the local copy be kept too.
Since 7 October 2024, Python 3.13 is the latest stable release, and it and, for few more months, 3.12 are the only releases with active support including for bug fixes (as opposed to just for security) and Python 3.9, [55] is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.8 reaching end-of-life.
The magic sets algorithm takes a Datalog program and a query, and produces a more efficient program that computes the same answer to the query while still using bottom-up evaluation. [23] A variant of the magic sets algorithm has been shown to produce programs that, when evaluated using semi-naïve evaluation, are as efficient as top-down ...
The NAG Library [1] can be accessed from a variety of languages and environments such as C/C++, [2] Fortran, [3] Python, [4] AD, [5] MATLAB, [6] Java [7] and .NET. [8] The main supported systems are currently Windows, Linux and macOS running on x86-64 architectures; 32-bit Windows support is being phased out. Some NAG mathematical optimization ...
GEKKO is an extension of the APMonitor Optimization Suite but has integrated the modeling and solution visualization directly within Python. A mathematical model is expressed in terms of variables and equations such as the Hock & Schittkowski Benchmark Problem #71 [ 2 ] used to test the performance of nonlinear programming solvers.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.