Search results
Results From The WOW.Com Content Network
Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles ) are written in superscript, e.g., Na + is a sodium ion with charge number positive one (an electric charge of one elementary ...
The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons [2] (e.g. K + (potassium ion)) while an anion is a negatively charged ion with more electrons than protons. [3] (e.g. Cl − (chloride ion) and OH − ...
The ion mass is expressed in units of the proton mass, = / and the ion charge in units of the elementary charge, = / (in the case of a fully ionized atom, equals to the respective atomic number). The other physical quantities used are the Boltzmann constant ( k B {\displaystyle k_{\text{B}}} ), speed of light ( c {\displaystyle c} ), and the ...
The dihydrogen cation or hydrogen molecular ion is a cation (positive ion) with formula +. It consists of two hydrogen nuclei , each sharing a single electron. It is the simplest molecular ion. The ion can be formed from the ionization of a neutral hydrogen molecule by
Since the parent ion can only be 2 P 1/2 or 2 P 3/2, the notation can be shortened to [] or ′ [], where nℓ means the parent ion is in 2 P 3/2 while nℓ′ is for the parent ion in 2 P 1/2 state. Paschen notation is a somewhat odd notation; it is an old notation made to attempt to fit an emission spectrum of neon to a hydrogen-like theory.
In plasma physics, the degree of ionization refers to the proportion of neutral particles that are ionized: = + where is the ion density and the neutral density (in particles per cubic meter). It is a dimensionless number, sometimes expressed as a percentage.
Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.
For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1] This means that a sodium ion in an electric field of 1 V/m would have an average drift velocity of 5.19 × 10 −8 m/s. Such values can be obtained from measurements of ionic conductivity in solution.