Search results
Results From The WOW.Com Content Network
An odds ratio greater than 1 indicates that the condition or event is more likely to occur in the first group. And an odds ratio less than 1 indicates that the condition or event is less likely to occur in the first group. The odds ratio must be nonnegative if it is defined. It is undefined if p 2 q 1 equals zero, i.e., if p 2 equals zero or q ...
Diagnostic odds ratios less than one indicate that the test can be improved by simply inverting the outcome of the test – the test is in the wrong direction, while a diagnostic odds ratio of exactly one means that the test is equally likely to predict a positive outcome whatever the true condition – the test gives no information.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
This exponential relationship provides an interpretation for : The odds multiply by for every 1-unit increase in x. [ 22 ] For a binary independent variable the odds ratio is defined as a d b c {\displaystyle {\frac {ad}{bc}}} where a , b , c and d are cells in a 2×2 contingency table .
Since V is a random variable and is a constant (), the false positive ratio is also a random variable, ranging between 0–1. The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio , expressed by E ( V / m 0 ) {\displaystyle E(V/m_{0})} .
Calculation of probability (risk) vs odds. In statistics, odds are an expression of relative probabilities, generally quoted as the odds in favor.The odds (in favor) of an event or a proposition is the ratio of the probability that the event will happen to the probability that the event will not happen.
The simplest measure of association for a 2 × 2 contingency table is the odds ratio. Given two events, A and B, the odds ratio is defined as the ratio of the odds of A in the presence of B and the odds of A in the absence of B, or equivalently (due to symmetry), the ratio of the odds of B in the presence of A and the odds of B in the absence of A.