Search results
Results From The WOW.Com Content Network
We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.
In the simplest case, if one allocates balls into bins (with =) sequentially one by one, and for each ball one chooses random bins at each step and then allocates the ball into the least loaded of the selected bins (ties broken arbitrarily), then with high probability the maximum load is: [8]
It always answers true for prime number inputs; for composite inputs, it answers false with probability at least 1 ⁄ 2 and true with probability less than 1 ⁄ 2. Thus, false answers from the algorithm are certain to be correct, whereas the true answers remain uncertain; this is said to be a 1 ⁄ 2 -correct false-biased algorithm .
A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...
One important drawback for applications of the solution of the classical secretary problem is that the number of applicants must be known in advance, which is rarely the case. One way to overcome this problem is to suppose that the number of applicants is a random variable N {\displaystyle N} with a known distribution of P ( N = k ) k = 1 , 2 ...
In general, in statistical physics, if we consider sentences of the form "the probability of a system S assuming state A is p" the geometry of the system does not always lead to the definition of a probability measure under congruence, although it may do so in the case of systems with just one degree of freedom. [5] Probability measures are ...
It is known, however, that there always exists at least one ordering of items that allows first-fit to produce an optimal solution. [6] There are many variations of this problem, such as 2D packing, linear packing, packing by weight, packing by cost, and so on. The bin packing problem can also be seen as a special case of the cutting stock problem.
[18]: 274–275 The result of this is that every possible combination of individuals who could be chosen for the sample has an equal chance to be the sample that is selected (that is, the space of simple random samples of a given size from a given population is composed of equally likely outcomes).